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Heat transfer at high Pklet number from a small sphere 
freely rotating in a simple shear field 
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The problem of heat transfer at high PBclet number P, from a sphere freely 
rotating in a simple shear field is considered theoretically for the case of small 
shear Reynolds numbers. It is shown that the present problem is in many re- 
spects similar to that of heat transfer past a freely rotating cylinder which was 
recently solved by Frankel & Acrivos (1968). By taking advantage of the close 
analogy between these two problems, an approximate method of solution is 
developed according to which the asymptotic Nusselt number for P, -+ 00 is 9, 
i.e. 44 times its value for pure conduction. As in the corresponding case of the 
cylinder, the fact that the asymptotic Nusselt number is independent of P, results 
from the presence of a region of closed streamlines which completely surrounds 
the rotating sphere. 

1. Introduction 
As shown theoretically by Frankel & Acrivos (1968), the Nusselt number N, 

for heat transfer from an isothermal cylinder freely rotating in a low Reynolds 
number shear flow becomes independent of the magnitude of the impressed 
shear, and equal to 5.73, for asymptotically large Pkclet numbers 5. This 
result, confirmed experimentally by Robertson & Acrivos (1970), is in contrast 
to the corresponding case of a particle held fixed where, as is well known, Nu 
becomes O(P$) for P, 9 1.  Of course, this seemingly paradoxical difference be- 
tween the two cases can easily be explained by noting that, at high P,, a freely 
rotating cylinder is surrounded by a region of effectively isothermal streamlines 
across which heat can be transferred by conduction alone, whereas, when the 
cylinder is stationary relative to the main stream, the transport of heat takes 
place, both by conduction and convection, across a conventional thermal 
boundary layer of thickness O(P;+). Nevertheless, the dissimilarity between the 
corresponding asymptotic expressions for the Nusselt number is significant, 
because it serves to  emphasize that, when the P6clet number is large, the rate 
of heat transfer from a particle to a surrounding fluid depends rather critically 
on whether the streamlines near the heated surface are open or closed. Thus, 
in dealing with phenomena of this type, whether theoretically or experimentally, 
it is important that a clear distinction be made between the two general cate- 
gories referred to above. 

So far, attention has been directed primarily to the case of an infinite circular 
cylinder in a simple shear, because the two-dimensionality of the flow field 
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simplified both the theory and the experiments (Frankel & Acrivos 1968; 
Robertson & Acrivos 1970). We now turn to the corresponding problem of heat 
transfer from a small sphere which, of course, is of more than academic interest 
in view of its relevance to possible physical applications. 

As shown by Cox, Zia & Mason (1968), who presented a detailed theoretical 
analysis supported by experimental results, the low Reynolds number shear 
flow past a rotating cylinder, and that past a sphere, have many points in common. 
In particular, in both cases the rotating surface is surrounded by a set of closed 
streamlines all of which are contained within the space enclosed by a limiting 
streamline, for the cylinder, and a limiting stream surface, for the sphere. Thus, 
one would expect the corresponding heat transfer problems also to be similar, 
especially so at high PBclet numbers where the temperature field is closely related 
to the structure of the streamlines near the rotating body. 

2. Basic equations 
Consider then the familiar energy equation in its dimensionless form, 

1 
u.VT = -V2T, (2.1) P, 

where u is the velocity vector divided by Xa, a is the radius of the cylinder or 
the sphere in terms of which all lengths are rendered dimensionless, X is the 
magnitude of the shear far from the body, T is the dimensionless temperature, 
and P, is the Phclet number Rcr with R being the shear Reynolds number Xa2/v 
and (T the Prandtl number. The boundary conditions are that 

T = l  at r = 1 ,  T=O as r+m. 

It is evident from (2.1) that, in the absence of any large temperature gradients, 
u .VT --f 0 as P, 3 00, hence the streamlines become isothermal. However, to 
obtain the temperature distribution it is necessary to take heat conduction into 
account since, as mentioned earlier, this is the primary mode of heat transfer 
at  high P, when the streamlines are closed. To this end, we multiply both sides 
of (2.1) by dt, t denoting the time, and integrate along a closed streamline. Thus, 
since T is single valued, 

fV2Tdt  = P, (u .VT)dt  5 P, 4 
for all closed streamlines and for all values of P,. 

P, 3 1 (Pan & Acrivos 1968) into 
The above general result simplifies in the case of a two-dimensional flow and 

d dT 
- I?($) - = constant, 
dllr all. 

where $ denotes the stream function and I?($) the circulation along a given $. 
Actually, (2.3) represents nothing more than a heat balance, for it merely states 
that the net rate of heat conduction across any closed streamline must be constant 
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from one streamline to the next, an obvious requirement. Nevertheless, (2.3) 
suffices to determine uniquely the temperature field, given the velocity dis- 
tribution and, therefore, I?($) (Pan & Acrivos 1968; Frankel & Acrivos 1968). 

For a three-dimensional flow, the problem becomes much more complicated. 
To be sure, as shown by Grimshaw (1969), one can again derive formally an 
integral condition, similar to (2.3), for the net heat transport across the isothermal 
stream surface; however, this expression cannot lead to any quantitative results 
because, in contrast to the two-dimensional case where the isotherms coincide 
with the streamlines, the location of these stream surfaces is a priori unknown. 
Therefore, it is necessary to return to (2.2) even though the latter does not repre- 
sent a heat balance, but merely an integral constraint arising from the single- 
valuedness of the temperature field. 

Let us now consider specifically the case of a small sphere freely rotating in the 
shear field given by, in dimensionless form, 

u1 = u2 = 0, u3 = xz. (2.4) 

As shown by Cox et al. (1968), the streamlines are formed by the intersection of 
the two sets of surfaces 

x1 = Crf(r), x2 = 4 rff.) [E +g(414 (2 .5 )  

where C and E are parameters, r f [xg + xi +xi]&, and 

Furthermore, bothf and g are monotonically decreasing functions of r and have 
the following properties: 

(b)  as r --f 03 
f = r- l+ 9r-4 + O(r--6), 

g = Qr-3 + hr-6 + O(r--8). 

Therefore, it is easily seen from the above and (2.5) that all streamlines are open 
if E > 0, that all of them are closed if -g( l )  < E < 0, and that no streamline 
can exist if E < -g( l ) .  Moreover, when -g(1) < E < 0, C must lie between 
- C* and + C*, where 

C*f(r*) = 1 with E+g(r*) = 0,  -g( l )  < E < 0. (2-9) 

Finally, from (2.5) and (2.7) we can readily deduce that E = -g( l )  corresponds 
to the surface of the sphere and that all the closed streamlines are contained 
within the space lying between the sphere and the limiting three-dimensional 
stream surface E = 0. 

As remarked earlier, the temperature along any given closed streamline ap- 
proaches a constant value as P, + CQ. In  addition, since E and C are constant 
along any streamline, it evidently follows that the temperature T becomes a 
function only of E and C. This result, together with (2.2), will now be used to 
obtain an equation for the temperature distribution in the limit P, -+ co. 
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Let x1 = r cos 8, x2 = r sin 8 cos q5, x3 = Y sin 8 sin q5. Then, in view of (2.5), one 
can, in principle at least, express r and 8 in terms of q5, E and C. Consequently, 
since T = T(E,  C), 

(2.10) 

where the b's are functions of $, E and C. Therefore, since 

dt = r sin # d+/u+, 

with uc denoting the velocity component along $, (2.2) together with (2.10) 
becomes 

where, of course, the integration is along the streamline (E ,  C). The 6's appearing 
above are now functions only of E and C, hence (2.11) is a partial differential 
equation for the temperature distribution inside the region of closed streamlines. 

The boundary conditions associated with (2.1 1)  are 

T = 1 at E = -g( l ) ,  the surface of the sphere, 

T = 0 at E = 0,  the limiting surface, 

and that T be finite within the space -g( l )  < E < 0, - C* < C 6 C*, where C* 
is given by (2.9). The requirement that the limiting surface be at  the free-stream 
temperature, although perhaps rather obvious, can be proved rigorously by a 
method identical to that used previously (Frankel & Acrivos 1968) to show that, 
for the corresponding case of the cylinder, the temperature along the limiting 
streamline equals that of the free stream as P, --f 00. 

The quantity of most interest here is the Nusselt number N, which, based on 
the diameter 2a, takes on the form 

(2.12) 

Hence, for pure conduction (P, = 0 ) ,  N, = 2. Moreover, in view of (2.11) the 
Nusselt number will also become independent of P, when P, + co, although one 
would certainly expect an asymptotic value greater than 2. Thus, as anticipated 
in the introduction, there exists a close analogy, of which we shall presently take 
advantage, between the corresponding heat transfer problem of the cylinder and 
that of the sphere. 

Evidently, it is impossible to obtain an exact solution of (2.11) except, perhaps, 
by numerical means. This is so because, first of all, (2.11) is a rather complicated 
partial differential equation, in contrast to (2.3), where T is a ftinction of the 
single variable 1cp. In  addition, the coefficients ?$E,C) can only be calculated 
numerically following a tedious integration of (2.10). And, finally, the domain over 
which (2.11) applies in the ( E ,  C) plane has the rather irregular boundaries 
given by (2.9). It is for these reasons then that an approximate technique was 
devised whose success depends on the close analogy between the cylinder and 
sphere problems referred to above. 
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3. An approximate value for the asymptotic Nusselt number 
Let us return to (2.3) again. It has the form of the familiar one-dimensional 

heat conduction equation with a variable thermal conductivity, and its exact 
solution can readily be obtained. For the purpose of attacking the corresponding 
sphere problem, however, we shall construct an approximate solution which is 
based on the well-known fact that the rate of heat transfer in systems having 
variable properties can generally be accurately estimated using only their values 
near the heated surface. 

= 0, 
the surface of the cylinder. At low Reynolds numbers (e.g. Robertson & Acrivos 
1970), 

Consider then the form of I?($) for the freely rotating cylinder near 

@ = & i-2- 1) - t ( r  - r--1)2cos 24, (3.1) 

hence 

where u,, u4 and r are determined as functions of $ and 4 from (3.1). Although 
P($) cannot be represented in closed form, it is possible to show that 

r 
- 7T = 1+4$-16$2+%3@3+0($4). 13.3) 

Accordingly, using I?($) as given by (3.3), we wish to solve (2.3), subject to 
the boundary conditions 

T = 1 at $ = 0, T = 0 at ~ = 4 (the limiting streamline). 

Of course, this can be aceomplishedin a variety of ways; however, for the purpose 
of applying the technique to the sphere problem we proceed a.s follows: 

(3.4) 

a2 = 2a1, a3 = S2ul, etc. (3.5) 

T = 1 - ~ , $ + a ~ $ ~ - a ~ $ ~ +  ..., Let 

which, because of (2.3) and (3.3), leads to the recursion relations 

Next, we consider the result of truncating the series (3.4) at successively higher 
terms and applying the boundary condition T = 0 a t  $ = t. Thus retaining 
only two terms of (3.4), we have that 

T = l-al$, 

therefore ail) = 4, where ail) denotes the first approximation to a,. If three terms 
are retained and use is made of the well-known Euler transformation to improve 
the convergence of (3.4) as $ -+ 4, then 

1 = +$(a12)++(a12)-ap)$)+ ...) = &(3ai2)-&ai1)), 
where d2) is obtained from (3.5) using the previously computed value of a,, 
i.e. ail). Consequently, ai2) = 6. 

When three terms are retained 
1 = 1 q $ 3 ) - 1  2) 1 (2) 

where again ak2) and ak2) are computed from (3.5) using a12). Hence, a13) = 5.71. 

8(4  1 44 +84"3 ), 
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The successive values of uik) are, therefore, 

4, 6, 5.71. (3.6) 

Noting that a, is also equal to the Nusselt number based on the cylinder diameter 
(Frankel & Acrivos 1968), it  is evident that the third term of the sequence almost 
coincides with the exact result 5.73. 

Of course, no claim is made that the procedure outlined above will converge, 
let alone that it will converge to the correct answer. In  fact, the fourth term in 
(3.6) is found to equal 5.5. Nevertheless, the technique appears to be useful, 
because even the second term in the sequence (3.6) provides a highly satisfactory 
estimate for the Nusselt number. 

In  view of the close similarity between the cylinder and sphere problems, it 
appears reasonable therefore to apply this approximate method to (2.11). First, 
however, we need to derive the form of (2.10) near the surface of the sphere. 

Let h = g ( l ) + E  = 1-047+E. Then, expanding (2.5) and (2.7) about r = 1, 
we obtain, along a streamline, 

r - 1  = ~ h 3 { l + ~ h 3 ( ~ - - ~ s s i n 2 8 c o s 2 $ ) + O ( h ~ ) }  (3.7) 

and cos B = p h - y i  - +g sin2 e cos2 $1 + o(A~)) .  (3.8) 

C" = gh2{1+&h3+O(A6)}. (3.9) 

Also, in view of (3.8), (2.9) becomes 

Next, to determine the coefficients of (2.10), we transform variables from the 
conventional spherical co-ordinates ( r ,  8, $) to (A ,  C, 4). Noting that T = T(h, C), 
and making use of (2.5), (2.6), (3.7) and (3.8), we obtain, after a considerable 
amount of algebra, that 

V ~ T  A - * ( ~ ~ T ~ A Z )  {s - ~ 9 3  + 1 2 ~ 3 ~  + o(P)]  
- ~ - 5 ( a ~ / a h )  {g - $ + ~ 3  + 6 ~ 3 ~  + o(P)) 
+ h-w2(a2qac2) {w - y 3 ~ 3  + 2 4 ~ 3 7  + o(P)} 

- h-6c(aT/ac) (13 - + 5 t 3  + 1 2 ~ 3 ~  + O(P)]  

+ h - 5 c ( a 2 ~ / a h a c ) { ~ ~ - l ~ ~ h 3 +  3 6 ~ 3 y +  o(P)), (3.10) 

where y E sin28cos2$. Interestingly enough, of the terms in V2T, expressed 
in spherical co-ordinates, only r-z a(r2aT/ar)/ar contributes to (3.10) to  the 
indicated order in A. 

To find the coefficients z k  of (2.11), we multiply (3.10) by rsined$/4ru+ and 
integrate from 0 to 271. along the streamline (A ,  C). Using the solution given by 
Cox et ul. (1968), 

However, since, to a first approximation, 8 is constant along a streamline in view 
of (3.8), it is evident that the coefficients of (2.11) will be those of (3.10) except 
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for y which becomes Q sin2 8. This equation can be rearranged further into a more 
convenient form by defining a new variable 

7 ~ C A - 2  = cos q i  + o(~3)). (3.11) 

Hence, again after some algebraic manipulations, (2.1 1) becomes finally 

0 = h-4(82T/8h2) {$$- FA3 + 6h3( 1 - 72)  + O(h6)) 

- h-5(8T/8h) {g - :*A3 + 3h3( 1 - 7') + O(h6)} 

+ A - ~ T , ~ T / ~ T  ah) {+g - qi - 7 2 )  + o(h3)) 

+ O(1) {72a2T/a72, 7 aT/ay} ,  
subject to the conditions 

T = 1 at h = 0, T = 0 at h = g(1) = 1.047, 

T finite for 0 < h < 1.047, -7" d 7 < r*, 
where, in view of (3.9) and (3.11) 

7* = 1 + & ~ 3 + 0 ( ~ 6 j .  

(3.12) 

To solve (3.12) we now resort to the approximate method described earlier 
in connexion with the corresponding problem of the freely rotating circular 
cylinder. Thus, in view of (3.12), the expression for T analogous to (3.4) is 

T = 1 - a,(7)h3 + a,(7)h6 + . . . , (3.13) 

which, when substituted in (3.12), leads to 

= &{[ - + 9( 1 - 7')] a, + [g - 6( 1 - 7')] r dal/dy}. (3.14) 

Therefore, if only two terms in (3.13) are retained and the boundary condition 
at  the limiting stream surface h = 1.047 is applied, 

= 1/(1.047)3. 

On the other hand, if three terms in (3.13) are retained, akl) is computed from 
(3.14) using ail), and the Euler transformation is employed 

1 = +(1~047)~{$ai~)- +(1.047)3 a2 (l) 1, 
a$') = [4/3( 1.047)3] - &&%- 9( 1 - r2)]. from which 

Finally, because of (2.12), (3.7), (3.11) and (3.13), 

hence the values for Nu computed from a:') and al2) are, successively, equal to 
8-27 and 9.31. Their ratio is equal to 1.48 which is almost that of the f i s t  two 
terms of (3.6). Consequently, it appears that a reasonable estimate for the asymp- 
totic Nusselt number is 

Nu N 9.31 X Q X  5.73 = 8.9 N 9. 
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